Multivariate statistics

My first R package is on CRAN!

I woke up this morning to an email saying my first R package, holodeck, was on it’s way to CRAN! It’s a humble package, providing a framework for quickly slapping together test data with different degrees of correlation between variables and differentiation among levels of a categorical variable.

Example use of holodeck library(holodeck) library(dplyr) df <- #make a categorical variable with 10 observations and 3 groups sim_cat(n_obs = 10, n_groups = 3, name = "Treatment") %>% #add 3 variables that covary sim_covar(n_vars = 3, var = 1, cov = 0.

Cupcakes vs Muffins: Round 2

Have you ever pondered whether a muffin is really a breakfast food and not just an excuse to eat cake first thing in the morning? Well, you’ve come to the right blog post! In a previous post, I explained how I created a dataset of the ingredients of 269 cupcake and muffin recipes. In this installment, I’m going to use that dataset to demonstrate some of the important properties of multivariate statistics, specifically the difference between principal component analysis (PCA) and partial least squares regression (PLS).

Interactive effects of drought severity and simulated herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites

Use of partial least squares regression (PLS) in ecology

PLS is a powerful multivariate regression method that has many applications for ecological data. When is it best used, what are its advantages, and how should you report your results?

[poster] Interactive effects of drought severity and herbivory on tea (Camellia sinensis) volatile and non-volatile metabolites.

Can pests rescue tea quality from climate change?

Cupcake Update

I know you’re all waiting on the edge of your seats for an update on the cupcakes vs. muffins data science project, but unfortunately I don’t have any answers to that age-old question* yet. As silly as it may sound, I’m actually considering using this data set for a paper about using PLS (partial least squares regression) for ecological data. So for now, I’m holding off on blogging about any results of analyses in case I end up wanting to use them for the publication.

Cupcakes vs. Muffins

One thing I’ve learned from my PhD at Tufts is that I really enjoy working data wrangling, visualization, and statistics in R. I enjoy it so much, that lately I’ve been strongly considering a career in data science after graduation. As a way to showcase my data science skills, I’ve been working on a side project to use webscraping and multivariate statistics to answer the age old question: Are cupcakes really that different from muffins?

Combined Effects of Drought and Herbivory on Tea Metabolism

Multivariate Statistics for Ecology and Baked Goods